Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium.
نویسندگان
چکیده
Experimental and clinical studies have suggested an increased production of reactive oxygen species (ROS) in the failing myocardium. The present study aimed to obtain direct evidence for increased ROS and to determine the contribution of superoxide anion (*O(2)(-)), H(2)O(2), and hydroxy radical (*OH) in failing myocardial tissue. Heart failure was produced in adult mongrel dogs by rapid ventricular pacing at 240 bpm for 4 weeks. To assess the production of ROS directly, freeze-clamped myocardial tissue homogenates were reacted with the nitroxide radical, 4-hydroxy-2,2,6, 6,-tetramethyl-piperidine-N-oxyl, and its spin signals were detected by electron spin resonance spectroscopy. The rate of electron spin resonance signal decay, proportional to *OH level, was significantly increased in heart failure, which was inhibited by the addition of dimethylthiourea (*OH scavenger) into the reaction mixture. Increased *OH in the failing heart was abolished to the same extent in the presence of desferrioxamine (iron chelator), catalase (H(2)O(2) scavenger), and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron; LaMotte) (*O(2)(-) scavenger), indicating that *OH originated from H(2)O(2) and *O(2)(-). Further, *O(2)(-) produced in normal myocardium in the presence of antimycin A (mitochondrial complex III inhibitor) could reproduce the increase of H(2)O(2) and *OH seen in the failing tissue. There was a significant positive relation between myocardial ROS level and left ventricular contractile dysfunction. In conclusion, in the failing myocardium, *OH was produced as a reactive product of *O(2)(-) and H(2)O(2), which might play an important role in left ventricular failure.
منابع مشابه
Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DM...
متن کاملMitochondrial oxidative stress in heart failure: "oxygen wastage" revisited.
There is growing evidence that oxidative stress is increased in myocardial failure and may contribute to the structural and functional changes that lead to disease progression. The report by Ide et al,1 in this issue of Circulation Research, provides the first direct measurement of increased oxidative stress in the myocardium of an animal model of heart failure. In this same model, the authors ...
متن کاملMitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium.
Oxidative stress in the myocardium may play an important role in the pathogenesis of congestive heart failure (HF). However, the cellular sources and mechanisms for the enhanced generation of reactive oxygen species (ROS) in the failing myocardium remain unknown. The amount of thiobarbituric acid reactive substances increased in the canine HF hearts subjected to rapid ventricular pacing for 4 w...
متن کاملEnhanced generation of reactive oxygen species in the limb skeletal muscles from a murine infarct model of heart failure.
BACKGROUND The generation of reactive oxygen species (ROS) is enhanced in the failing myocardium. We hypothesized that ROS were also increased in the limb skeletal muscles in heart failure. Methods and Results-- Myocardial infarction (MI) was created in mice by ligating the left coronary artery. After 4 weeks, the left ventricle was dilated and contractility was diminished by echocardiography. ...
متن کاملIn vitro antioxidant effects of barberry fruit extracts
A vast majority of the studies addressing the free radicals including hydroxyl radical is a damage compound of biochemical molecules such as DNA, proteins and lipids. When free radicals specially hydroxyl radical are not adequately removed from the body, it may damage biological macromolecules, leading to a variety of disease occurs. Therefore, the body should be protected by an enzymatic or no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 86 2 شماره
صفحات -
تاریخ انتشار 2000